На какой раме собрать квадрокоптер. Как спроектировать собственный квадрокоптер

Несмотря на то что квадрокоптеры крайне модная тема, выбирать компоненты для сборки своего аппарата по-прежнему не так просто. Выбор деталей для конкретного проекта - это мучительный поиск оптимального сочетания веса, мощности и функ-циональности. Поэтому прежде, чем окунуться в мир бесчисленных интернет-магазинов и безымянных китайских производителей, давай проделаем подготовительную работу.

Что такое квадрокоптер и для чего это надо

Мультироторы, они же мультикоптеры или просто коптеры, - это беспилотные летательные аппараты, предназначенные для развлечения, съемки фото и видео с воздуха или отработки автоматизированных систем.

Коптеры обычно различают по числу используемых моторов - начиная от бикоптера с двумя моторами (как GunShip из фильма «Аватар») и заканчивая октакоптером с восемью. На самом деле число моторов ограничено только твоей фантазией, бюджетом и возможностями полетного контроллера. Классическим вариантом является квадрокоптер с четырьмя моторами, расположенными на перекрещивающихся лучах. Такую конфигурацию еще в 1920 году попытался соорудить француз Этьен Омишен (Étienne Oehmichen), и в 1922 году у него это даже получилось. По сути, это самый простой и дешевый вариант сделать летательный аппарат, способный без особых проблем поднимать в воздух небольшие камеры вроде GoPro. Но если ты собираешься взлетать с серьезной фото- и видеотехникой, то стоит выбирать коптер с большим числом моторов - это не только увеличит грузоподъемность, но и добавит надежности, если в полете выйдет из строя один или несколько моторов.

Теория полета

В теории полета (аэродинамике) принято выделять три угла (или три оси вращения), которые задают ориентацию и направление вектора движения летательного аппарата. Проще говоря, летательный аппарат куда-то «смотрит» и куда-то двигается. Причем двигаться он может не туда, куда «смотрит». Даже самолеты в полете имеют какую-то составляющую «сноса», которая уводит их от курсового направления. А вертолеты вообще могут летать боком.

Три эти угла принято называть крен, тангаж и рыскание. Крен - это поворот аппарата вокруг его продольной оси (оси, которая проходит от носа до хвоста). Тангаж - это поворот вокруг его поперечной оси (клюет носом, задирает хвост). Рыскание - поворот вокруг вертикальной оси, больше всего похожий на поворот в «наземном» понимании.

Основные маневры (слева направо): движение по прямой, крен/тангаж и рыскание

В классической схеме вертолета основной винт при помощи автомата перекоса лопастей управляет креном и тангажем. Так как основной винт обладает ненулевым сопротивлением воздуха, у вертолета возникает вращающий момент, направленный в сторону, противоположную вращению винта, и, чтобы его скомпенсировать, у вертолета есть хвостовой винт. Изменяя производительность хвостового винта (оборотами или шагом), классический вертолет управляет своим рысканием. В нашем же случае все сложнее. У нас есть четыре винта, два из них вращаются по часовой стрелке, два - против часовой. В большинстве конфигураций используются винты с неизменяемым шагом и управлять можно только их оборотами. Если они все будут вращаться с одинаковой скоростью, то они скомпенсируют друг друга: рыскание, крен и тангаж будут нулевыми.

Если мы увеличим обороты одного винта, вращающегося по часовой стрелке, и уменьшим обороты другого винта, вращающегося по часовой стрелке, то мы сохраним общий момент вращения и рыскание по-прежнему будет нулевым, но крен или тангаж (в зависимости от того, где мы сделаем ему «нос») изменятся. А если мы увеличим обороты на обоих винтах, вращающихся по часовой стрелке, а на винтах, вращающихся против часовой стрелки, уменьшим (чтобы сохранить общую подъемную силу), то возникнет вращающий момент, который изменит угол рыскания. Понятное дело, что все это будем делать не мы сами, а бортовой компьютер, который будет принимать сигнал с ручек управления, добавлять поправки с акселерометра и гироскопа и крутить винтами, как ему надо. Для того чтобы спроектировать коптер, необходимо найти баланс между весом, временем полета, мощностью двигателей и другими характеристиками. Все это зависит от конкретных задач. Все хотят, чтобы коптер летал выше, быстрее и дольше, но в среднем время полета составляет от 10 до 20 минут в зависимости от емкости аккумулятора и общего полетного веса. Стоит запомнить, что все характеристики связаны между собой и, к примеру, увеличение емкости аккумулятора приведет к увеличению веса и, как следствие, к уменьшению времени полета. Чтобы узнать, сколько примерно твоя конструкция будет висеть в воздухе и сможет ли вообще оторваться от земли, существует хороший онлайн-калькулятор ecalc.ch . Но прежде чем вбивать в него данные, нужно сформулировать требования к будущему аппарату. Будешь ли ты устанавливать на аппарат камеру или другую технику? Насколько быстрым должен быть аппарат? Как далеко тебе нужно летать? Давай посмотрим на характеристики различных компонентов.


PX4 - бортовой компьютер с полноценной UNIX-системой

Рама

Основной момент, который нужно решить при выборе рамы, - будешь ли ты использовать готовую раму или же делать ее сам. С готовой рамой все проще, да и заказывать в любом случае придется множество деталей. При этом, учитывая цены в китайских магазинах, самодельный вариант может оказаться дороже. С другой стороны, собственную раму в случае аварии будет проще починить. Ну и, естественно, своими руками можно сделать любую, даже самую сумасшедшую конструкцию. Рассмотрим поподробнее самосборный вариант.

Сделать раму можно из любых подручных материалов (дерево, алюминий, пластик и так далее). Можно подойти чуть серьезнее и выпилить ее на ЧПУ-станке из плетеного карбона, причем можно усложнить задачу и сделать складную конструкцию.

Самый простой вариант для любителей DIY - пойти в OBI, «Леруа Мерлен» или на строительный рынок и купить квадратную алюминиевую трубу 12 × 12, а также алюминиевый лист толщиной в 1,5 мм. Для того чтобы сделать раму из таких материалов типа «четыре палки и крепеж», достаточно дрели или ножовки по металлу. Но нужно быть готовым к тому, что такая конструкция прослужит недолго. Все-таки все эти профили делают из очень мягкого материала (АД31/АД33), при полетах он будет легко гнуться.


Oehmichen № 2, пилотируемый квадрокоптер французского инженере Этьена Омишена, запущенный в 1922 году

В качестве образца для твоей рамы можно взять упрощенную заводскую раму или же найти в интернете готовый чертеж. Более сложные материалы (например, углепластик) можно заменить на алюминий - если и получится тяжелее, то ненамного. В любом случае стоит обращать внимание на длину и симметричность лучей. Длина лучей выбирается исходя из диаметра используемых пропеллеров, так, чтобы после их установки расстояние между окружностями вращающихся винтов было не менее 1–2 см, и уж тем более эти окружности не должны пересекаться. Моторы, устанавливаемые на лучах, должны быть равноудалены от центра рамы, где будет располагаться «мозг», и (в большинстве случаев) находиться на одном расстоянии друг от друга, образуя равносторонний многоугольник.

При проектировании стоит учесть, что центр рамы должен совпадать с центром тяжести, поэтому установить аккумулятор сзади между лучами - плохая идея, если он не будет скомпенсирован грузом спереди, например камерой. Продумай, на что будет приземляться твой аппарат, для новичков можно посоветовать приспособить что-то мягкое на «пузе» или концах лучей, например плотный поролон или теннисные мячики. А также защити аккумулятор на случай неудачного приземления, например установи его между пластинами рамы или расположи под высокими посадочными лыжами.

info

Полет от первого лица (FPV) очень захватывает, особенно если пользоваться видео-очками и HeadTracker’ом, который будет повторять движения головы на подвесе FPV-камеры, создавая ощущение, что находишься в кабине пилота.

Моторы и пропеллеры

Из-за вращения моторов в разные стороны приходится использовать разнонаправленные пропеллеры: прямого вращения (против часовой) и обратного вращения (по часовой). Обычно используются двухлопастные пропеллеры, их легче балансировать и найти магазинах, в то время как трехлопастные дадут больше тяги при меньшем диаметре винта, но доставят много головной боли при балансировке. Плохой (дешевый и неотбалансированный) пропеллер может развалиться в полете или вызвать сильные вибрации, которые передадутся на датчики полетного контроллера. Это приведет к серьезным проблемам со стабилизацией и вызовет сильное смазывание и «желе» на видео, если ты снимаешь что-то с коптера или летаешь с видом от первого лица.

Регулятор скорости,
он же ESC

У любого пропеллера есть два основных параметра: диаметр и шаг. Их обозначают по-разному: 10 × 4.5, 10 × 45 или просто 1045. Это означает, что диаметр пропеллера 10 дюймов, а его шаг 4,5 дюйма. Чем длиннее пропеллер и больше шаг, тем большую тягу он сможет создавать, но при этом повысится нагрузка на мотор и увеличится потребление тока, в результате он может сильно перегреться и электроника выйдет из строя. Поэтому винты подбираются под мотор. Ну или мотор под винты, тут как посмотреть. Обычно на сайтах продавцов моторов можно встретить информацию о рекомендуемых пропеллерах и аккумуляторах для выбранного мотора, а также тесты создаваемой тяги и эффективности. Существуют и пропеллеры с изменяемым шагом, что в теории повысит маневренность, но в реальности добавит сложную механику, имеющую свойство изнашиваться и ломаться с последующим дорогостоящим ремонтом.

Также чем больше винт, тем больше его инерция. Если нужна маневренность, лучше выбрать винты с большим шагом или трехлопастные. Они при том же размере создают тягу в 1,2–1,5 раза больше. Понятно, что винты и скорость их вращения нужно подбирать так, чтобы они смогли создать тягу большую, чем вес аппарата.

И наконец, бесколлекторные моторы. У моторов есть ключевой параметр - kV. Это количество оборотов в минуту, которые сделает мотор, на поданный вольт напряжения. Это не мощность мотора, это его, скажем так, «передаточное число». Чем меньше kV, тем меньше оборотов, но выше крутящий момент. Чем больше kV при той же мощности, тем больше оборотов и ниже момент. При выборе мотора ориентируются на то, что в штатном режиме он будет работать при мощности 50% от максимальной. Не стоит думать, что чем kV больше - тем лучше, для коптеров с типичной 3S-батареей рекомендуемое число находится в диапазоне от 700 до 1000 kV.

info

Более прочный материал - дюраль (Д16Т). Практически не гнется, достаточно пружинистый, и его применяют в авиации. Профили из него в ОБИ не продаются, но можно поймать на Митинском рынке на третьем этаже, на рынке ТВЦ «Строй» тоже были.

Питание и контроллеры питания

Капитан подсказывает: чем больше мощность мотора, тем больше батарейка ему нужна. Большая батарейка - это не только емкость (читай, время полета), но и максимальный ток, которая она отдает. Но чем больше батарейка, тем больше и ее вес, что вынуждает скорректировать наши прикидки относительно винтов и моторов. На сегодняшний день все используют литий-полимерные батарейки (LiPo). Они легкие, емкие, с высоким током разрядки. Единственный минус - при отрицательных температурах работают плохо, но если их держать в кармане и подключать непосредственно перед полетом, то во время разряда они сами слегка разогреваются и не успевают замерзнуть. LiPo-элементы вырабатывают напряжение 3,7 В.

При выборе батареи стоит обращать внимание на три ее параметра: емкость, измеряемую в миллиампер-часах, максимальный ток разряда в емкостях аккумулятора (С) и число ячеек (S). Первые два параметра связаны между собой, и при их перемножении ты узнаешь, сколько тока сможет отдавать этот аккумулятор продолжительное время. Например, твои моторы потребляют 10 А каждый и их четыре штуки, а батарея имеет параметры 2200 мА · ч 30/40C, таким образом, коптеру требуется 4 10 A = 40 A, а батарея может выдавать 2,2 A 30 = 66 A или 2,2 А 40 = 88 А в течение 5–10 секунд, что явно будет достаточно для питания аппарата. Также эти коэффициенты напрямую влияют на вес аккумулятора. Внимание! Если тока будет не хватать, то в лучшем случае батарея надуется и выйдет из строя, а в худшем загорится или взорвется; это же может произойти при коротком замыкании, повреждении или неправильных условиях хранения и зарядки, поэтому используй специализированные зарядные устройства, аккумуляторы храни в специальных негорючих пакетах и летай с «пищалкой», которая предупредит о разрядке. Число ячеек (S) указывает на количество LiPo-элементов в батарее, каждый элемент выдает 3,7 В, и, например, 3S-аккумулятор будет отдавать примерно 11,1 В. Стоит обращать внимание на этот параметр, так как от него зависят скорость оборотов моторов и тип используемых регуляторов.

Элементы батареи объединяют последовательно или параллельно. При последовательном включении увеличивается напряжение, при параллельном - емкость. Схему подключения элементов в батарее можно понять по ее маркировке. Например, 3S1P (или просто 3S) - это три последовательно подключенных элемента. Напряжение такой батареи будет 11,1 В. 4S2P - это восемь элементов, две группы, подключенных параллельно по четыре последовательных элемента.

Однако моторы подключаются к батарее не напрямую, а через так называемые регуляторы скорости. Регуляторы скорости (они же «регули» или ESC) управляют скоростью вращения моторов, заставляя твой коптер балансировать на месте или лететь в нужном направлении. Большинство регуляторов имеют встроенный стабилизатор тока на 5 В, от которого можно питать электронику (в частности, «мозг»), можно использовать отдельный стабилизатор тока (UBEC). Выбираются контроллеры скорости исходя из потребления мотором тока, а также возможности перепрошивки. Обычные регули довольно медлительны в плане отклика на поступающий сигнал и имеют множество лишних настроек для коптеростроительства, поэтому их перепрошивают кастомными прошивками SimonK или BLHeli. Китайцы и тут подсуетились, и часто можно встретить регуляторы скорости с уже обновленной прошивкой. Не забывай, что такие регули не следят за состоянием аккумулятора и могут разрядить его ниже 3,0 В на банку, что приведет к его порче. Но в то же время на обычных ESC стоит переключить тип используемого аккумулятора с LiPo на NiMH или отключить уменьшение оборотов при разрядке источника питания (согласно инструкции), чтобы под конец полета внезапно не отключился мотор и твой беспилотник не упал.

Моторы подключаются к регулятору скорости тремя проводами, последовательность не имеет значения, но если поменять любые два из трех проводов местами, то мотор будет вращаться в обратном направлении, что очень важно для коптеров.

Два силовых провода, идущих от регулятора, надо подключить к батарейке. НЕ ПЕРЕПУТАЙ ПОЛЯРНОСТЬ! Вообще, для удобства регуляторы подключают не к самой батарейке, а к так называемому Power Distribution Module - модулю распределения энергии. Это, в общем-то, просто плата, на которой припаяны силовые провода регуляторов, распаяны разветвления для них и припаян силовой кабель, идущий к батарее. Конечно, батарею не надо припаивать, а надо соединить через разъем. Ты же не хочешь перепаивать батарею каждый раз, как она сядет.

Бортовой компьютер и сенсоры

Выбор полетных контроллеров для коптеров очень велик - начиная от простого и дешевого KapteinKUK и нескольких open source проектов под Arduino-совместимые контроллеры до дорогого коммерческого DJI Wookong. Если ты настоящий хакер, то закрытые контроллеры тебя не должны сильно интересовать, в то время как открытые проекты, да еще и основанные на популярной ардуинке, привлекут многих программистов. О возможностях любого полетного контроллера можно судить по используемым в нем датчикам:

Гироскоп позволяет удерживать коптер под определенным углом и стоит во всех контроллерах; акселерометр помогает определить положение коптера относительно земли и выравнивает его параллельно горизонту (комфортный полет); барометр дает возможность удерживать аппарат на определенной высоте. На показания этого датчика очень сильно влияют потоки воздуха от пропеллеров, поэтому стоит прятать его под кусок поролона или губки; компас и GPS вместе добавляют такие функции, как удержание курса, удержание позиции, возврат на точку старта и выполнение маршрутных заданий (автономный полет). К установке компаса стоит подойти внимательно, так как на его показания сильно влияют расположенные рядом металлические объекты или силовые провода, из-за чего «мозги» не смогут определить верное направление движения; сонар или УЗ-дальномер используется для более точного удержания высоты и автономной посадки; оптический сенсор от мышки используется для удержания позиции на малых высотах; датчики тока определяют оставшийся заряд аккумулятора и могут активировать функции возврата на точку старта или приземление.

Сейчас существует три основных открытых проекта: MultiWii, ArduCopter и его портированная версия MegaPirateNG. MultiWii самый простой из них, для запуска требует Arduino с процессором 328p, 32u4 или 1280/2560 и хотя бы одним датчиком-гироскопом. ArduCopter - проект, напичканный всевозможным функционалом от простого висения до выполнения сложных маршрутных заданий, но требует особого железа, основанного на двух чипах ATmega. MegaPirateNG - это клон ArduCopter, который способен запускаться на обычной ардуине с чипом 2560 и минимальным набором датчиков из гироскопа, акселерометра, барометра и компаса. Поддерживает все те же возможности, что и оригинал, но всегда догоняет в развитии.

Продвинутый девяти-
канальный пульт

С железом для открытых проектов аналогичная ситуация, как и с рамами для коптера, то есть ты можешь купить готовый контроллер или собрать его самостоятельно с нуля или на основе Arduino. Перед покупкой стоит всегда обращать внимание на используемые в плате датчики, так как развитие технологий не стоит на месте, а старье китайцам как-то надо распродать, к тому же не все сенсоры могут поддерживаться открытыми прошивками.

Наконец, стоит упомянуть еще один компьютер - PX4, отличающийся от клонов Arduino тем, что у него есть UNIX-подобная операционная система реального времени, с шеллом, процессами и всеми делами. Но надо предупредить, что PX4 - платформа новая и довольно сырая. Сразу после сборки не полетит.

Настройка полетных параметров, как и программы настройки, очень индивидуальна для каждого проекта, а теория по ней могла бы занять еще одну статью, поэтому вкратце: почти все прошивки для мультикоптеров основаны на PID-регуляторе, и основной параметр, требующий вмешательства, - пропорциональная составляющая, обозначаемая как P или rateP. Если при взлете твой коптер дергается из стороны в сторону, то это значение надо уменьшать, если же вяло реагирует на внешние воздействия, то наоборот - повышать, остальные нюансы ты сможешь найти в инструкциях и на сайтах разработчиков.

Безопасность

Все новички, думая о безопасности, вспоминают AR.Drone и его защиту винтов. Это хороший вариант, и он работает, но только на мелких и легких аппаратах, а когда вес твоего коптера начинает приближаться к двум килограммам или давно перевалил за эту цифру, то спасти может только прочная железная конструкция, которая будет весить очень много и, как ты понимаешь, сильно уменьшит грузоподъемность и автономность полета. Поэтому лучше сперва тренироваться подальше от людей и имущества, которое можно повредить, а уже по мере улучшения навыков защита станет и не нужна. Но даже если ты пилот со стажем, то не забывай о технике безопасности и продумывай возможные негативные последствия твоего полета при нештатных ситуациях, особенно при полетах в людных местах. Не стоит забывать, что сбой контроллера или канала связи может привести к тому, что аппарат улетит от тебя далеко, и тогда для поиска может пригодиться GPS-трекер, установленный заранее на коптер, или же простая, но очень громкая пищалка, по звуку которой ты сможешь определить его местоположение. Настрой и заранее проверь функцию fail safe твоего полетного контроллера, которая поможет приземлиться или вернуть коптер на точку старта при потере сигнала с пульта.

Управление

Немного про радиоаппаратуру. Сейчас практически все передатчики для летающих моделей работают на частоте 2,4 ГГц. Они достаточно дальнобойные, и этот частотный диапазон не так зашумлен, как, например, 900 МГц. Для полета вообще-то достаточно четырех каналов: газ, рыскание, тангаж, крен. Ну а восьми каналов точно хватит и на что-нибудь еще.

info

Для полетов с камерой обзаведись подвесом, который будет удерживать камеру параллельно горизонту при маневрах, а также поможет управлять наклоном камеры. Большинство контроллеров имеют выходы для стабилизации подвесов с сервоприводом, а также выход для переключателя управления кнопкой спуска камеры.

Комплект обычно состоит из самого пульта и приемника. На приемнике находятся ручки управления и дополнительные кнопки. Обычно выбирают аппаратуру Mode2, когда левый стик управляет газом и поворотом, а правый - наклонами коптера. Все ручки, кроме газа, подпружинены и возвращаются в начальное положение при отпускании. Также стоит обращать внимание на количество каналов. Для беспилотника потребуется четыре канала управления и один канал для переключения режимов полета, кроме того, могут потребоваться дополнительные каналы для управления камерой, для настройки или для особых режимов полетного контроллера. При выборе пульта стоит также учитывать возможность смены радиомодуля, чтобы в будущем его можно было легко обновить.

Сегодня в данной статье Вы узнаете фундаментальные знания о вращательных винтах для квадрокоптера (которые к тому же называют реквизитами). Какие показатели влияют на их производительность и эффективность. Какие формы и сколько лопастей должны быть у пропеллера, чтобы не занижаться тягу.

Что нужно знать: основные определения и понятия

Пропеллеры для квадрокоптеров подразделяются по следующим критериям:

  • какая у них длина;
  • какой у них шаг;
  • какая площадь пропеллеров;
  • какое направление вращения;
  • какая у них форма;
  • и сколько лопастей на каждом пропеллере;

Длина пропеллера и его шаг

Длина и шаг являются главными параметрами определяющие тягу. Во время вращения винта, лопасти образуют диск. Диаметр этого диска и есть длина. Под шагом понимают расстояние, которое винт может преодолеть за одно вращение, в некой плотной среде (если вспомнить шуруп, и то как он вкручивается в доску, то все становится понятно). Величина шага у лопастей квадрокоптера, зависит от наклона самих лопастей, то под каким углом они расположены (угол атаки).

Тяга считается сильной, когда винтомоторная группа (ВМГ) винтами перемещает большой объём воздуха. При увеличении длины, шага или какого-то одного из этих параметров, где скорость вращения остается неизменной, тяга винтов увеличивается. Вместе с этим образуется турбулентность за счет увеличения сопротивления воздуха. И как следствие, большой радиус пропеллера и угол наклона лопастей, потребует больших затрат энергии, за счет чего будет уменьшено время полёта.

Для аэрофотосъёмки идеально подойдут большие пропеллеры с малым шагом, а небольшие винты с большим шагом подойдут для гоночных дронов, которым важна скорость полёта.

Количество и форма лопастей пропеллеров

Стандартным вариантом принято считать пропеллер с двумя лопастями. На большинство маленьких квадрокоптерах ставятся винты с лопастями больше двух. Это позволяет обеспечить более равномерный поток распределения воздуха, и как следствие снизить уровень турбулентности. К тому же, за счет дополнительных лопастей увеличивается и подъемная сила. Таким образом, маленький диаметр винта с тремя (или более) лопастями, способен обеспечить силу подъёма, что и стандартный пропеллер с двумя лопастями и большим диаметром. Отзывчивость квадрокоптера, также зависит от количества лопастей у пропеллера, и чем больше их, тем отзывчивее дрон в полёте. Стоимость таких многолопастных винтов дороже стандартных, и есть сложности в изготовлении и отцентровки данных винтов. Такие винты следует покупать у производителей или официальных дилеров.

Присмотритесь на различия форм окончаний лопастей. Их подразделяют на три категории:

  • Normal;
  • Bullnose (BN);
  • Hybrid Bullnose (HBN);

Винты Normal позволяют сэкономить расход аккумулятора за счет меньшей тяги, и благоприятно влияют на продолжительность полёта не вызывая дополнительного перерасхода энергии. На винтах Normal имеются заостренные наконечники. Равный диаметр винтов BN при их большой площади создает большую тягу. Такое преимущество сопровождается недостатком – уменьшение времени полёта из-за высокого потребления энергии. Имеющиеся утяжелители на кончиках реквизитов, способствуют увеличению крутящего момента и повышают скорость реакции квадрокоптера по оси рысканья. Что касается наконечников HBN, то они находятся между Normal и Bullnose.

Направление вращения

За направление вращение лопастей отвечают двигатели, которые разделяют на два типа:

  • CW – крутит пропеллер по часовой стрелке;
  • CCW – крутит пропеллер против часовой стрелки;

Принцип установки таких моторов зависит от схемы устройства квадрокоптера. Более наглядно схемы изображены на рисунке.

По кромке лопасти можно определить то, в какую сторону он вращается.


Пластик и карбон: где качество и эффективность

Пластиковые пропеллеры пользуются большей популярностью. Их отличительные черты это:

  • пластичность;
  • низкая цена;
  • большой выбор ассортимента;
  • доступность;

Также стоит отметить, что более гибкие лопасти имеют повышенную устойчивость к деформациям при ударах о препятствие, но вместе с тем, имеются погрешности в балансировке.

На рынке также представлены карбоновые лопасти. Карбоновые винты высоки в цене, но обладают рядом положительных критериев:

  • прочность;
  • эффективность;
  • лёгкость;

Также на рынке представлены гибридные пропеллеры из пластика и углеродного волокна. Второй обычно усиливает первый. Пропеллеры такого типа дешевы в цене и не уступают по качеству и жесткости чисто карбоновым.

Под качеством реквизитов понимают то, насколько правильно они изготовлены. Правильное изготовление пропеллеров обеспечивает хороший баланс во время полёта и не создают дополнительную вибрацию ВМГ. Бренды, которые производят лучшие пропеллеры для квадрокоптеров и других летательных аппаратов – это GWS. Также еще рекомендуют APC, которую производят американцы, и EMP с большим ассортиментов товаров, не только реквизитов.

Спецификация и характеристики

Чтобы понять параметры определенного пропеллера, следует смотреть на кодировку. Производители обозначают длину, шаг и количество лопастей в таком формате:

LLPPxB или LxPxB – где L-длина лопасти, P-шаг (указывается в дюймах) и B-количество лопастей.

На примере разберем два разных формата обозначения:

Так первый реквизит с пометкой 6045 (6 на 4,5), говорит о том, что у пропеллера две лопасти (по стандарту), 6-дюймов длина и 4,5-дюйма шаг.
Во втором уже указано количество лопастей 5040 на 3 (5 на 4 и 3), где 3 на конце это, как раз, количество лопастей. А 5 и 4 дюйма, длина и шаг соответственно.

В некоторых случаях указываются обозначения направления вращения. Они указываются латинскими буквами – R и C. Так пропеллеры с пометкой (C) ставятся на двигатели CCW, а с пометкой (R) – на двигатели с CW. Еще некоторые производители указывают аббревиатуры из чего они изготовлены BN, что значит с заостренными наконечниками и утяжелителями или HBN – гибрид пластика и карбона (о них мы говорили выше).

Методы установки

Есть разные способы установки винтов на квадрокоптер. Зачастую вал электромотора - это ничто иное, как металлический штырь. Без каких-либо вспомогательных элементов для установки винта. Для таких случаев используют цанговые зажимы и пропсейверы – это специальные переходники.

При создании своих моделей квадрокоптеров, удобно использовать пропсейверы (см. на фото) Пропсейвер похож на втулку. В боковой части поверхности имеются по одному отверстию с каждой стороны, выполненных симметрично. Такая конструкция устанавливается на вал, и затягивается винтами. Далее пропеллер нужно надеть на вал и закрепить нейлоновыми стяжками, также есть вариант крепления резиновыми кольцами.

Цанговый зажим является более надежным, по сравнению с пропсейвером. Его конструкция построена конусообразной втулкой с резьбовым соединением. Сначала на вал устанавливается цанга, затем идет зажимная втулка с пропеллером и шайбой. Весь переходник закрепляется коком – гайкой, особой формы.

На моторах класса Outrunner, где ротор бесколлекторного электродвигателя находится с внешней стороны, в верхней части конструкции присутствует несколько отверстий, предназначенных для установки различных типов переходников и креплений.

Компания DJI, при производстве своих квадрокоптеров на бесколлекторных моторах, устанавливают самозатягивающиеся гайки. Резьба на валах такого типа двигателей, роторы которых вращаются в противоположенную сторону.

Балансировка пропеллеров с помощью подручных средств

Купленные дешевые пропеллеры не могут быть на 100% сбалансированными, только если это не оптовый сбыт фирменных пропеллеров. Такие пропеллеры негативно влияют на работу ВМГ, что вызывает дополнительные вибрации и вследствие чего появляется “эффект желе” при съёмках видео. Помимо качества записи видео, также страдают и двигатели. Постоянные вибрации оказывают негативное влияние на двигатели, подшипники и шерстни, тем самым увеличивая стоимость обслуживания квадрокоптера.

В данном случае потребует процедура балансировки реквизитов для квадрокоптера. Для её выполнения потребуется:

  • винт;
  • скотч;
  • суперклей (если не нашелся скотч);
  • наждачная бумага;
  • балансир для пропеллеров (в данном примере рассматривается – Du-Bro Tru-Spin, или можно использовать китайские аналоги, как на видео);

Чтобы приступить к балансировке, установите устройство на ровной поверхности так, чтобы ось была выровнена по горизонтали.

Перед балансировкой лопасти необходимо проверить на отсутствие повреждений, затем установить на ось и немного отклонить в нужную сторону. Далее смотрим на горизонтальное положение пропеллера, удалось ли ему вернуться после отклонения. Если нет, то нужно облегчить более тяжелую лопасть (наждачной бумагой). На более легкую лопасть можно наклеить скотчи или нанести на нее лак для ногтей, если таковой имеется под рукой. В случае если нет ни того ни другого, используйте суперклей.

При повороте балансировочного станка, необходимо удостовериться, что пропеллер держит равновесие в таком положении. Подчеркнем, что все процедуры по утяжелению и облегчению лопастей необходимо производить с внутренней стороны (вогнутых).

Далее проделываем процедуру балансировки ступицы. Перемещаем пропеллер вертикально, и смотрим, если есть отклонения в одну сторону, то утяжелять нужно противоположенную. Утяжелять можно с помощью лака или суперклея. Достигаем баланса, меняем положение – переворачиваем, и удостоверяемся, что баланс достигнут и с другой стороны. На этом балансировка лопастей пропеллера закончена.

Калькулятор eCalc

Для расчета винтомоторных параметров, при создании своих моделей беспилотных летательных аппаратов, есть очень удобный сервис – eCalc. Многие, кто собирает квадрокоптеры своими руками знают про этот онлайн калькулятор. Раздел, где приводятся параметры расчетов для квадрокоптеров, выглядит следующим образом.

Сперва может показаться, что всё понятно. Но следует знать о некоторых моментах, которые сильно влияют на результаты произведенных вычислений.

Первоначально, необходимо указать взлётный вес коптера. Если имеются подвесы и камеры, то их тоже нужно включить в этот параметр. Если сервис показывает Without Drive (что значит “без привода”), то нужно указать общий вес рамы, и вес других составных частей, таких как:

  • пропеллеры;
  • платы;
  • контроллер;
  • подвеса;
  • камера;
  • оборудование для FPV полетов.

Также необходимо прибавить к массе +10%, которую займут провода. На выходе получается искомая цифра полного взлетного веса квадрокоптера.

Указываем общее число роторов, по какой схеме они расположены – одиночной или соосной. Указываем верхнюю планку высоту полёта, погодные условия при полете – температура воздуха и атмосферное давление).

В выпадающем списке предлагается выбрать аккумулятор. При отсутствии нужной батареи, выбирайте ту что ближе подходит по токоотдаче и емкости. Далее, система завершит заполнение полей сама. Указываем вес и структуру батареи. При необходимости установить дополнительные АКБ, в текстовом поле P укажите их число. А в поле Weight указывается их суммарный вес.

Поле этого, в выпадающем списке указываем тип ESC, так называемый макс. ток этих регуляторов.

Указываем производителя моторов. В окне появляется его оценка. По показателям KV указывается нужный образец.

Теперь указываем параметры пропеллеров – тип, диаметр и шаг. По возможности, применяйте винт с максимально допустимым диаметром для данной рамы. Указывайте передаточное число, если у привода зубчатая трансмиссия. Количество зубьев направляющей шестерни к ведомой.

Если система не выдает нужных параметров, то можно указать в текстовом поле Custom. И там указать нужные параметры для расчета в калькуляторе. Имейте ввиду, что в одну ячейку указываются параметры батареи.

После заполнения всех полей, производится вычисления. На выходе вы получите необходимые данные. Они изображены в виде графиков, списков и циферблатов.

RashVinta – программа, которая производит расчет параметров воздушного винта не только для квадрокоптера, но и других летательных аппаратов.

С помощью RashVinta можно делать вычисления с исходными данными, такие как:
Мощность двигателя и диаметр винта;
Мощность двигателя и частота вращения винта;
Диаметр Винта и его шаг.

В первом случае устанавливаем флажок только на параметре “расчет по диаметру винта”. Указываем информацию о размере пропеллера, мощность двигателя, скорость полета – максимальная и средняя. Жмем “Рассчитать” и видим параметры шага и частоту обращения пропеллера.

Во втором случае все отметки снимаются. Далее, как и в первом случае указываем исходную мощность двигателя, также не забываем про частоту вращения винта и скорость летательного аппарата, аналогично первому случаю. Жмем “Рассчитать” и видим все нужные данные по диаметру винта и его шагу.

В третьем случае расчеты производятся на профессиональном уровне. Галочкой отмечаем пункт “указать параметры винта”. Параметры диаметра и шага винта вносим в нужные поля. Жмем “Рассчитать” и видим данные по профилю лопасти винта, его изображение появляется в окне. Можно менять масштаб для его изучения. Все заключения по расчетам сохраняются в виде таблиц в формате date.html, предусмотренном в сборке программы.

В программе есть возможность увидеть профиль лопасти под углом наклона. Для этого отметьте галочкой пункт “Профиль с углом”. И еще можно увидеть точки, который были использованы для расчета – отметьте галочкой пункт “показать расчетные точки”. На принтере данное изображение профиля можно вывести на бумагу в проекции 1:1.

Заключение о сложности процедуры

Как вы уже заметили, работы по подбору и корректировке реквизитов, довольно сложная задача для новичка. Но я надеюсь, что эта статья будет полезна для любителей квадрокоптеров и другой беспилотной авиации, грамотно провести процедуру балансировки пропеллеров, их установки на квадрокоптер с самодельной конструкцией. А также избавиться от ошибок в работе ВМГ серийных моделей мультикоптеров.

Полезные советы по выбору винтомоторной группы.

Вы даже не представляете, (если не посещали авиамодельный кружок), сколько математических и аэродинамических расчетов необходимо провести конструкторам при проектировании винтомоторного группы летательного аппарата.


В то же время, вы уже знакомы на практике , с трудностью подбора правильной комбинации «мотор — несущий винт» для получения наилучших летных характеристик .

К моему и вашему счастью, знание это, к государственным секретам вовсе не относится (по крайней мере при строительстве МАЛЕНЬКИХ квадрокоптеров ), и многие энтузиасты дуют щеки распространяют свой опыт через Интернет и печатные издания.

В качестве раздела пособия по созданию собственного квадрокоптера ( , и , и даже тут и тут , автор решил поделится с новичками информацией о том, как выбрать товар в магазине элементы винтомоторной группы для квадрокоптера. Впрочем, по его уверениям, данный скилл также будет полезен создателям подобных типов летательных аппаратов с иным числом несущих винтов.

Выбор двигателя

При выборе двигателя, всегда полезно в первую очередь изучить его характеристики , которые написаны на этикете предоставляются продавцом и производителем. Автор рекомендует перед покупкой обязательно изучать все характеристики понравившегося вам товара. В качестве примера, он приводит ссылку на сайт Hobbyking.com, а точнее, на предлагаемый на нем для продажи бесщеточный двигатель для моделей.


Давайте рассмотрим приведенные характеристики:

Вес – 10 граммов

Максимальный ток потребления – 5.5 Ампер

Сопротивление – 0 mH

Максимальное напряжение – 7 Вольт

Мощность (в Ваттах) – 210 Ватт (Это не ошибка! Указано на сайте продавца!)

Диаметр вала – 2 мм

Длина – 22 мм

Диаметр – 18

Общая длина – 30 мм

Спецификация изделия:

Вес: 10 граммов (c учетом крепления и проводов)

Потребление без нагрузки: 0.4 Ампера

Тяга: 130 Грамм при 5000 об./мин

Скорость вращения без нагрузки: 15000 об./мин. при 7.4 Вольт

Пиковое потребление: 5.5 Ампер

Диаметр вала: 2 мм

Диаметр двигателя: 18 мм

Длина: 30 мм (с учетом длины вала и размеров крепления)

При выборе двигателя, вы в первую очередь должны определится с полетным весом вашего квадрокоптера, а также тягой , необходимой ему для отрыва от земли.

Главное условие – тяга должна быть вдвое большей, чем максимальные полетный вес конструкции.

Недостаточная тяга двигателей приведет к плохой управляемости либо памятнику квадрокоптеру неспособности аппарата взлететь. В то же время, слишком большая тяга приведет к излишне резкой реакции квадрокоптера на приборы управления и летной нестабильности.

Необходимую тягу можно прикинуть по следующей формуле: Необходимая тяга = (Полная масса конструкции* 2)/4.

Приведем пример. Если ваш квадрокоптер имеет полетную массу (или взлетную – при использовании ДВС или постройке бомбардировщика) около 1 килограмма, то произведя калькуляции по приведенному выше соотношению, мы получим необходимую тягу в 2 килограмма. Это значит, что каждый двигатель должен иметь тягу около 500 граммов. Конечно, при расчете должен учитываться полный вес конструкции , в частности, массы двигателей и пропеллеров. Если же вы мечтаете о аэрофотосъемке или видеосъемке, не забудьте прибавить массу камеры и ее источников питания.

Несмотря на то, что выбор полетного веса зависит от вас, лучше все же сделать его минимальным. Максимальное снижение полетного веса является одним из важнейших принципов авиастроение , так как любая дополнительная масса снижает маневренность, полетное время и полезную нагрузку.

Особенности выбора несущих винтов

Как вы помните, квадрокоптер держится в воздухе при помощи двух пар несущих винтов, которые вращаются в противоположных направлениях. Основными характеристиками несущих винтов являются шаг и диаметр, увеличение которых приводит к повышенному потреблению энергии двигателями квадрокоптера.

Кроме того, шаг определяет дистанцию , которая преодолевается за время одного оборота винта . Кратко говоря, больший шаг винта предполагает меньшую скорость его вращения, но увеличивает скорость летательного аппарата что, увы, повышает расход энергии.


Соотношение диаметра и шага винта должно быть сбалансированным. Меньший шаг винтов приведет к созданию большего крутящего момента и снижению потребляемой двигателями мощности. Если вы планируете использовать ваш квадрокоптер для аэробатики , вам просто необходимы пропеллеры с большим крутящим моментом. Они которые обеспечат большую скорость и меньшую нагрузку на источник энергии. Кроме того, пропеллеры с меньшим шагом увеличивают стабильность полета.

Пропеллер с большим шагом перемещает больший объем воздуха , что может вызвать турбулентность и привести к вибрации . Если это происходит, просто выберите несущие винты с меньшим шагом.

Что касается диаметра несущего винта, то его эффективность напрямую связана с площадью контакта с воздухом. Таким образом, даже небольшое увеличение диаметра пропеллера приводит к увеличению его эффективности. В качестве примера можно привести большую скорость плаванья пловцов с крупными кистями и ступнями, которые, однако, затрачивают при этом больше сил.

Вращение пропеллера с меньшим диаметром легче ускорить или остановить (сказывается инерция ). Пропеллер с меньшим диаметром также предполагает меньшее потребление энергии двигателями. Именно из-за этого, при построении шести- или восьмикоптеров в основном используются несущие винты с пропеллерами, меньшими по диаметру чем в квадрокоптерах сравнимых размеров.

Для крупных квадрокоптеров с большой грузоподъемностью рекомендовано использовать большие по диаметру несущие винты и двигателя с повышенным крутящим моментом для улучшения стабильности полета.

Мотор и пропеллер: муки выбора

  • Наблюдения и исследования. Займитесь просмотром роликов на YouTube . В результате, вы не только истечете слюной по чужим квадрокоптерам ознакомитесь с конструкциями, но и подсмотрите, какие моторы и несущие винты используют ваши коллеги по хобби . Важно использовать в своей работе чужой опыт , поскольку за него уже заплачено посторонними.
  • Вникание в физику процесса и эксперименты . Если вы задрот имеете математический склад ума и лишние деньги, не смогли найти информации о винтомоторного группе, действительно необходимой в вашей работе, вы можете открыть исследовательскую программу с разными комбинациями мотор-пропеллер. Однако помните, что исследования окупаются не сразу, так что будьте готовы к трате времени и денежным вливаниям.

В конце — концов, созданы и выложены в Интернет

Онлайн калькулятор пропеллеров eCalc известный по таким запросам как: propeller calculator, rc calculator, rc калькулятор - эффективное средство для расчета подбора двигателя с пропеллером для авиа модели. Этот калькулятор позволит Вам не только сохранить жизнь своему двигателю, но и увеличить срок эксплуатации, так же экономить ресурс батареи благодаря возможности выбрать оптимальные параметры для крейсерского режима (оптимальный режим).

Калькулятор только онлайн и расположен по этому адресу ECALC.CH . На главной странице (на английском) предлагается выбор (калькулятора) по типу модели и выбор языка:

  • propCalc - калькулятор для пропеллеров самолета
  • xcopterCalc - калькулятор для коптеров
  • fanCalc - калькулятор импеллерных систем
  • heliCalc - калькулятор для вертолетов

С годами ECALC урезал функционал для бесплатных пользователей, поэтому ниже скрины как обойти ограничения ECALC.CH плюс в довесок еще одна ссылка: http://rc-calc.com/ru/copter

Для тех кто понимает в html без слов понятно, описание для тех кто в первый раз. Видим, что AX-4008Q неактивен.

Нажимаем в браузере F12 (например в хроме или firefox) попадаем в "инспектора". Нажимаем на стрелку (на скрине отмечена цифрой 1), затем нажимаем на окно выбора (чего либо, пример с двигателем) по номером два на скрине и видим, что выделилась строка (под цифрой 3).

Нажимаем на эту строку, слева значек - развернуть. Видим в списке нужный двигатель видим, что стоит признак disable. Переделываем аналогично другим строкам, которые работают.

Пример исправленной строки.

С годами ECALC урезал функционал для бесплатных пользователей, поэтому в довесок еще одна ссылка: http://rc-calc.com/ru/copter

Update: В связи с большим интересом именно к этой части, статья от двигателях расширена и дополнена информацией о таких параметрах двигателя как KV и размеры XXYY.

И так, двигатель, или по-другому — мотор.

Как видно из картинки ниже, двигатели могут быть самых разных размеров и иметь разный внешний вид и цвет. Хотя есть и общая черта, которая их объединяет — цилиндрическая форма.

Когда мы говорим о двигателях для летающих моделей, мы, как правило, имеем в виду бесколлекторные (бесщёточные) моторы. Эти моторы очень похожи на обычные. У них тоже есть магниты и обмотки, но нет щеток, для передачи тока к от контактов двигателя к обмоткам. Именно поэтому, они и называются бесщеточными (brushless). Можно считать эти моторы трехфазными. Напряжение подается на обмотки не непрерывно, как у обычных моторов для постоянного тока, а с определенной частотой. Это и заставляет движущуюся часть мотора вращаться. При чем, такие моторы могут вращаться намного быстрее обычных, и при этом еще и не терять энергию на щетках.

Какие характеристики важны при выборе двигателя? По мимо размера, формы, цвета и т.д. следует обратить внимание на две важнейшие характеристики бесколлекторных моторов:

  • потребляемый ток (измеряется в амперах А)
  • Kv-rating

C первой характеристикой должно быть понятно. Чем выше мощность мотора, тем выше потребляемый ток, при одинаковом напряжении питания. Чем больше ток, тем больше подъемную силу создает двигатель. Ток зависит от оборотов двигателя и нагрузки на него, создаваемой пропеллером.

Kv-rating показывает сколько оборотов своей оси будет совершать двигатель за одну минуту (RPM) при определенном напряжении. Формула вот такая: RPM=Kv*U

Как использовать эти параметры при выборе двигателя? Во-первых, максимальный потребляемый ток говорит нам о том, какой контроллер скорости выбрать (об этом позже). Kv-rating — это аналог лошадиных сил в автомобиле. Мало кто понимает что это такое, но все знают, что 100 лс — это мало, а 600 — это круто. Вот так и тут 🙂

Остановимся подробнее на этом параметре — KV. Сравнение с лошадиными силами хоть и правильное, но не совсем понятное при выборе двигателя под вашу модель. Представьте спортивную машину мощностью 600 лс. Сможет ли она поехать 300 км/час? Думаю да. А сможет ли она сделать тоже самое, если к ней привязать 1т груза? Нет. И даже не сдвинется с места. Не потому, что мощности мало, а потому, что колеса будут пробуксовывать. Что нам нужно для перетягивания 1т груза? Трактор. У трактора может быть меньшая мощность, и маленькая скорость, но большие колеса и крутящий момент позволят потянуть наш груз. И так, мы видим, что одна и та же энергия нужна и для быстрого вращения маленьких колес, и для медленного вращения больших колес. В случае с квадрокоптерами, двигатель с большим KV идеально подходит для маленьких быстро вращающихся пропеллеров (гоночные квадрокоптеры), а двигатели с маленьким KV — для больших дронов с большими пропеллерами.

Типичный двигатель гоночного квадрокоптера имеет KV 2100-2500, тогда как для тяжелых аппаратов, способных поднять несколько килограмм своего веса и столько же груза — 200-900 KV. У гоночных моделей пропеллеры обычно 5-6 дюймов, у больших аппаратов, предназначенных для длительных полетов и фотосъемки — 15-17 дюймов. Представляете, какие нагрузки будут на двигатель, пропеллер и все остальное, если пропеллер размером 15 дюймов раскрутить до нормальных оборотов маленького пропеллера? KV рейтинг двигателя очень важная характеристика при выборе, хотя это и не единственный важный параметр.

Важным параметром при выборе мотора для конкретного аппарата является его подъемная сила (Trust). Измерить подъемную силу можно в разных единицах, хотя правильной является Ньютон, но удобной Килограмм. И так, подъемная сила в 500 грамм означает, что 4 двигателя способны будут поднять 2 кг веса, включая самих себя. При этом, нужен запас мощности. Итого, имеем формулу Сила/1 Мотор = (Вес Коптера x 2) / 4. Для коптера весом 1 кг нужны двигатели с минимум 500 грамм подъемной силы. Все просто.

Еще одной характеристикой двигателя является его эффективность. Не будем останавливаться подробно, но отметим, что двигатель с эффективностью 70% тратит 70% энергии на полет, и 30% на обогрев вселенной, как говорил мой учитель физики. Эффективность двигателя зависит не только от самого устройства, а еще и от других элементов: пропеллера, батареи, контроллера скорости, веса и т.д.

Кроме всего этого, двигатели еще имеют физические параметры, которые отображаются в их размерах. Это высота двигателя, диаметр и количество катушек обмотки. Например, Turnigy Multistar 5130-350 — это двигатель с диаметром статора 51 мм, высотой 30мм и KV 350. Это большой двигатель для больших моделей. А вот этот — Scorpion M-2205-2350KV небольшой, но очень хороший двигатель для гоночных квадрокоптеров. Он 22 мм в диаметре и 5 мм в высоту. Имеет KV рейтинг 2350.

Сам по себе двигатель не может создавать подъемную силу — нужен пропеллер. Пропеллер — это своего рода преобразователь энергии вращения вала двигателя в подъемную силу.

Важнейшими характеристиками пропеллера являются его размер и угол наклона лопастей (Pitch). Размер обычно указывается в дюймах, и тут все понятно. Pitch тоже указывается в дюймах, и означает, на сколько поднялся бы пропеллер за один оборот вокруг своей оси с данным наклоном лопасти, если бы он двигался в плотном веществе.

Меньший пропеллер с меньшим наклоном лопастей меньше сопротивляется воздуху, и соответственно, меньше нагружает двигатель, не давая ему использовать всю свою мощность. Соответственно, очень большой пропеллер будет сильнее нагружать двигатель и приведет к его перегрузке. Таким образом, надо подбирать пропеллеры так, чтобы попадать в допустимые границы рабочих параметров двигателя и создавать достаточную подъемную силу. Стандартным пропеллером для среднего квадрокоптера обычно является пропеллер с характеристиками 8-11/4.5-4.7 Рассчитать параметры пропеллера (и не только) поможет, например, вот этот сайт .

Кроме того, не забудьте, что пропеллеры бывают двух типов вращения: по часовой стрелке и против. Необходимо это для того, что половина двигателей квадрокоптера вращается в одну сторону, а другая половина — в обратную.

Скоро мы рассмотрим несколько двигателей, с точки зрения влияния их характеристик на параметры квадрокоптера и научимся выбирать двигатель под наши задачи.

Очень хорошая статья о выборе двигателя и пропеллеров на английском языке вот .